成考高升专数学考试通常包含高中数学的基本知识点,备考过程中,需要深入理解每个知识点,做大量练习题,熟悉解题方法,提高解决数学问题的能力。此外,根据考试大纲和题型,有针对性地进行复习,做模拟试卷,提高答题速度和准确性。
概率的性质
(1)0≤P(A)≤1,P(ϕ)=0.
(2)对于任意事件A,B有
P(A∪B)=P(A)+P(B)-P(AB).
特别得,当A与B互不相容时,P(A∪B)=P(A)+P(B).
其可推广:对于任意事件A,B,C有
P(A∪B∪C) =P(A) +P(B) +P(C)-P(AB)-P(AC)-P(BC) +P(ABC) .
当A₁,A₂,…,An,互不相容时,
P(A₁∪A₂∪…∪ An) =P(A₁) +P(A₂) +…+P(A),其中n为正整数.
(3)P(B-A)=P(B)-P(AB).
特别得,当ACB时,P(B-A)=P(B)-P(A),且P(A)≤P(B).
(4)P(A')=1-P(A).
以上概率性质很重要.希望考生掌握这些性质,并会用它们进行概率的基本运算。
条件极值的求法
先构造拉格朗日函数:F(x,y,λ)=f(x,y)+λϕ(x,y).
求解方程组
Fₓ=fₓ(x,y)+λϕₓ(x,y)=0,
Fᵧ=fᵧ(x,y)+λϕᵧ(x,y)=0,
Fλ=ϕ(x,y)=0;
解出x,y,λ,则其中点(x,y)就是z=f(x,y)在条件ϕ(x,y)=0下的可能极值点的坐标.
求二元函数的无条件极值及极值点
求二元函数的无条件极值的步骤:
第一步:求fₓ(x,y),fᵧ(x,y),并解方程组fₓ(x,y)=0;fᵧ(x,y)=0求得一切驻点;
第二步:对于每一个驻点(x₀,y₀),求出二阶偏导数的值A,B和C;
第三步:定出B²-AC的符号,判定点(x₀,y₀)是否是极值点,若是,判定是极大值点还是极小值点,并求出极值f(x₀,y₀).
求二元函数的条件极值
求二元函数f(x,y)在条件ϕ(x,y)=0下的极值的方法与步骤:
方法一:化条件极值为无条件极值
第一步:从条件ϕ(x,y)=0中,求出y的显函数形式y=ψ(x);
第二步:将y=ψ(x)代人二元函数f(x,y)中,化为一元函数f[x,ψ(x)]的无条件极值;
第三步:求出一元函数f[x,ψ(x)]的极值即为所求.
方法二:拉格朗日乘数法
第一步:作拉格朗日函数F(x,y,λ)=f(x,y)+λϕ(x,y)(入为拉格朗日乘数);
第二步:由函数F(x,y,λ)的一阶偏导数组成如左方程组
Fₓ(x,y,λ)=fₓ(x,y)+λϕₓ(x,y)=0,
Fᵧ(x,y,λ)=fᵧ(x,y)+λϕᵧ(x,y)=0,
Fλ(x,y,λ)=ϕ(x,y)=0;
第三步:求解上述方程组,得驻点(x₀,y₀,λ),则点(x₀,y₀)就是函数f(x,y)在条件ϕ(x,y)=0下的可能的条件极值点。
通常,判定所得点(x₀,y₀)是否为所给问题的条件极值点,常依据问题的实际意义判定:如果所求驻点唯一,且实际问题的确存在最大值(或最小值),那么,所求点(x₀,y₀)就是满足条件的极大值点(或极小值点),也是所给实际问题的最大值点(或最小值点)。
下一篇:mfa艺术硕士有用么